Eine kurze Geschichte des Lebens


Vergleich zwischen der künstlich hergestellten xDNA und der natürlich vorkommenden DNA. Bild: The Kool Research Group/Stanford University
Vergleich zwischen der künstlich hergestellten xDNA und der "natürlich" vorkommenden DNA. Bild: The Kool Research Group/Stanford University

Von Wolfgang KnierzingerTelepolis

Während die Entstehung des Lebens auf der Erde vor ca. 4 Milliarden Jahren weiterhin Rätsel aufgibt, tüfteln Forscher in aller Welt an synthetischen Lebensformen

Über die Entstehung des Lebens gibt es bekanntlich – wie durch unten stehende Auswahl veranschaulicht werden soll – verschiedenste Theorien:

  • Theorie A: Leben entstand in der elektrischen Entladungen ausgesetzten „Ursuppe“ des Archaikums
  • Theorie B: Leben entstand im Inneren von Kometen zu unbestimmter Zeit
  • Theorie C: Leben entstand in der Nähe von hydrothermalen Quellen im Archaikum
  • Theorie D: Leben entstand am Freitag, den 16. November 2007, um 20:34 MEZ am J. Craig Venter Institute (9704 Medical Center Drive, Rockville, Maryland 2085, USA), unmittelbar nach der zweiten Kaffeepause

Geschichte wird vordringlich entlang der Bruchlinien prägnanter Zäsuren geschrieben. Historische Zäsuren stellen in aller Regel markante Einschnitte politischer oder soziokultureller Natur dar, welche im Erinnerungsdiskurs oftmals synonym mit griffigen Jahreszahlen (bspw. 1914, 1933, 1945,1989 etc.) Verwendung finden.

Während sich die gesellschaftspolitische Geschichte der westlichen Welt einigermaßen chronologisch in einzelne Epochen einfassen lässt, fällt es außerordentlich schwer, der Wissenschaftsgeschichte, insbesondere jener des 20. und 21. Jahrhunderts, mittels einzelner Jahreszahlen zu Leibe zu rücken. Dies leuchtet deshalb ein, weil wissenschaftlicher Forschritt in aller Regel auf einer über mehrere Jahre bzw. Jahrzehnte hinweg betriebenen Grundlagenforschung wurzelt, deren Untersuchungsergebnisse, falls überhaupt, erst schrittweise als praktisch anwendbare Technologie Einzug in die Gesellschaft halten.

Eine klare, systematische Chronologisierung bestimmter Technologien wird dadurch naturgemäß erschwert. Bei dem Bemühen, das Profil der wissenschaftlichen Errungenschaften des 20.Jahrhunderts zu schärfen, indem man selbigen einzelne Jahreszahlen zuordnet, ist somit äußerste Vorsicht geboten. Es soll zwar an dieser Stelle von einem mehr oder weniger dubiosen Ranking der eminenten „Wissenschaftsjahre“ des 20.Jahrhundert abgesehen werden, dennoch sei in diesem Zusammenhang ein Jahr hervorgehoben, welches sich unter Berücksichtigung vergangener, gegenwärtiger und wohl auch zukünftiger Forschungsschwerpunkte, von zentraler Bedeutung erweist. Die Rede ist vom Jahr 1953.

1953

Dwight D. Eisenhower wurde zum 34. Präsidenten der Vereinigten Staaten ernannt, in der DDR brach ein Volksaufstand aus, der ein blutiges Ende fand, und Generalissimus Josef Stalin schied infolge eines Schlaganfalls unheldenhaft aus dem Leben – retrospektiv betrachtet, erweist sich 1953 als Wendejahr für Vieles.

Aber was geschah aus wissenschaftlicher Sicht in diesem Jahr Relevantes? Die Erstbesteigung des Mount Everest durch Edmund Hillary und Tenzing Norgay am 29. Mai 1953 kann zwar als denkwürdiges Ereignis der Rubrik „Entdeckung“ hinzugerechnet werden, aus dem Blickwinkel der Naturwissenschaften nimmt der Gipfelsturm jedoch einen eher untergeordneten Stellenwert ein. Die im selben Jahr erfolgte Entschlüsselung des strukturellen Aufbaus der DNA durch James Watson, Francis Crick, Maurice Wilkins und Rosalind Franklin hatte da schon ungleich weitreichendere Konsequenzen zur Folge. Die räumliche Darstellung der Doppelhelix-Struktur der DNA, deren einzelne Nukleotide sich aus Phosphorsäure, den vier Basen Adenin, Cytosin, Guanin und Thymin und einem Zucker (Desoxyribose) zusammensetzen, ebnete den Weg für die moderne Gentechnik und Molekularbiologie.

1953 war jedoch nicht nur das Jahr, in dem erstmals eine richtige Vorstellung vom strukturellen Aufbau der DNA gewonnen werden konnte, sondern zudem auch ein Jahr, das mit wichtigen Einsichten bei der Klärung der Frage nach dem Ursprung des Lebens aufwartete. Mithilfe einer relativ einfachen Versuchsapparatur (im Wesentlichen bestand diese aus zwei Glaskolben, die durch zwei Glasröhren miteinander verbunden waren), mit der das Atmosphäre-Ozean-System der Urerde nachgebildet wurde, gelang dem erst 23 jährigen Chemiestudenten Stanley Miller eine sensationelle Entdeckung. Nachdem der Student Wasser in einen der beiden Kolben geleert und dem ganzen Versuchssystem Sauerstoff entzogen hatte, fügte er Wasserstoff, Methan und Ammoniak hinzu. In einem Folgeschritt wurde nun das Wasser zum Kochen gebracht und mittels zweier Elektroden elektrischen Entladungen ausgesetzt. Unter den vorherrschenden Bedingungen bildete sich bereits nach wenigen Tagen ein komplexes Gemisch aus organischen Verbindungen (Aminosäuren, Fettsäuren, Zuckern).

Das sogenannte Miller-Urey-Experiment, welches im Mai 1953 veröffentlicht wurde, stellte das wissenschaftliche Denken über die Entstehung des Lebens auf der Erde schlagartig auf eine neue Grundlage – zeigte es doch eindrücklich auf, dass Vorstufen des Lebens (Aminosäuren) unter verhältnismäßig einfachen chemischen Bedingungen gebildet werden konnten. Die Fachwelt war fasziniert. Eine letztliche, allumfassende Erklärung für die Entstehung des Lebens schien in greifbarer Nähe. Doch die Euphorie war verfrüht.

Heute, mehr als 55 Jahre nach Millers Versuchsreihen, ist man immer noch nicht imstande, die vor etwa 4 Milliarden Jahren erfolgte Entstehung des Lebens auf der Erde akkurat nachzuzeichnen. Genetik und Mikrobiologe haben sich indes zu breit gefächerten Forschungsfeldern ausdifferenziert, wodurch die Frage nach der Entstehung des Lebens auf andere Bedeutungsebenen verfrachtet wird. Zur Frage nach der Entstehung des „natürlichen“ Lebens gesellte sich jene nach der Erzeugung künstlicher Organismen. Letztere dürfte sich neuerdings – wohl gemerkt – mehr aus moralischer und weniger aus technologischer Sicht aufwerfen. Da die Moral in der Wissenschaft allenfalls ein Element der Verzögerung darstellt, quasi immer nur dazu befähigt ist, einzelne Schlachten zu gewinnen, auf lange Sicht aber jeden Krieg zu verlieren scheint, dürften auch die ethischen Bedenken im Bereich der Synthetischen Biologie bloß von ephemerer Natur sein. Künstliches Leben, sofern es dieses noch nicht gibt (siehe Interview), ist nichts anderes als eine Frage der Zeit.

Bereits in den siebziger Jahren kam es zur Herstellung der ersten gentechnisch veränderten Bakterien, wenig Jahre später erfolgte mit der Entwicklung der Sanger-Methode (Kettenabbruch-Synthese) der erste Schritt in Richtung einer vollständigen Sequenzierung der menschlichen DNA, welche im Jahre 2003 unter Federführung von Craig Venter, dem schillernden Enfant terrible der Genforschung, ihren offiziellen Abschluss fand. Trotz einer weitverbreiteten Skepsis gegenüber der Gentechnik, haben gentechnisch veränderte Pflanzen, welche höhere Erträge erlauben und größere Widerstandsfähigkeit gegen Schädlinge, Spritzmittel und Trockenheit aufweisen, längst den Weg zum Endverbraucher gefunden. Auch die rote (medizinische Biotechnologie) und weiße (Industrielle Biotechnologie) sind bereits zu maßgeblichen Zugpferden des wirtschaftlichen Wachstums geworden und werden sich aller Voraussicht nach zu den Leittechnologien der ersten Hälfte des 21. Jahrhunderts aufschwingen.

weiterlesen