New LHC Experiments May Help Explain What Happened to All the Antimatter

Bild aus der Bauzeit des LHC. ©CERN
Bild aus der Bauzeit des LHC. ©CERN
Researchers have seen a baryon decay for the first time, which may help explain why there is far more matter than anti-matter in the universe.

By Daniel Oberhaus | MOTHERBOARD

For every particle in the universe, physicists believe that there should exist an antiparticle with the same mass, but the opposite charge. When a particle and an antiparticle meet, they annihilate one another and are transformed into pure energy. Looking around, though, it’s obvious that most of the antimatter has disappeared and the universe has not been annihilated into pure energy. Although antimatter has been observed in nature, it occurs in far smaller quantities than its twin, which begs one of the most perplexing questions in physics: where did all the antiparticles go? Or to put it another way: why do we exist?

Physicists have been puzzling over this matter-antimatter asymmetry for decades, but new data coming from the Large Hadron Collider beauty (LHCb) experiment may help shed some light on the problem. As reported last week in Nature, physicists at the LHC have observed CP violation in the decay of particles known as baryons and antibaryons for the first time. Although a little more data is needed before it can officially be declared a discovery, these observations may blow open the door for new experiments that will ultimately explain what happened to all the antimatter, and beyond that, why there is something in the universe rather than nothing.

read more