CRISPR Can Now Edit Genes Using Nanoparticles Instead of Viruses

The new delivery mechanism completely turned off a gene responsible for high cholesterol in mice.

By Daniel Oberhaus | MOTHERBOARD

Since its was first harnessed by scientists in 2013, the natural gene-editing technology known as CRISPR has sparked a designer baby controversy, dreams of ending hereditary diseases, and fears of sophisticated biological terrorism. Yet for all of CRISPR’s peril and promise, figuring out a way to effectively deliver the system to the target DNA has remained a significant technical hurdle.

 Usually, a CRISPR system—which consists of an enzyme called Cas9 that cuts out a portion of a target DNA strand, as well as a short strand of RNA that guides the enzyme to its target—catches a ride through the body in a virus. This is a less than ideal solution because patients receiving a CRISPR treatment can quickly develop, or may already possess, antibodies that would destroy it.

As detailed today in Nature Biotechnology, a team of researchers at MIT has created a highly effective, non-viral solution: a nanoparticle system that can deliver CRISPR to target genes. Moreover, the nanoparticle CRISPR-delivery system was able to completely turn off a gene responsible for high cholesterol level when administered to mice.

The group was led by MIT research scientist Hao Yin and associate professor of chemical engineering Daniel Anderson, both of whom have made ground-breaking discoveries in the science of gene editing in recent years.

read more