White Dwarfs: Compact Corpses of Stars


NASA’s Hubble Space Telescope captures a field of stellar husks. These ancient white dwarfs are 12 to 13 billion years old, only slightly younger than the universe itself. In theory, white dwarfs will eventually stop emitting light and heat and become black dwarfs. Credit: NASA and H. Richer (University of British Columbia).
The stars in the sky may seem ageless and unchanging, but eventually most of them will turn into white dwarfs, the last observable stage of evolution for low- and medium-mass stars. These dim stellar corpses dot the galaxy, leftovers of stars that once burned bright.

By Nola Taylor Redd | SPACE.com

Main-sequence stars, including the sun, form from clouds of dust and gas drawn together by gravity. How the stars evolve through their lifetime depends on their mass. The most massive stars, with eight times the mass of the sun or more, will never become white dwarfs. Instead, at the end of their lives, they will explode in a violent supernova, leaving behind a neutron star or black hole.

Smaller stars, however, will take a slightly more sedate path. Low- to medium-mass stars, such as the sun, will eventually swell up into red giants. After that, the stars shed their outer layers into a ring known as a planetary nebula (early observers thought the nebulas resembled planets such as Neptune and Uranus). The core that is left behind will be a white dwarf, a husk of a star in which no hydrogen fusion occurs.

Smaller stars, such as red dwarfs, don’t make it to the red giant state. They simply burn through all of their hydrogen, ending the process as a dim white dwarf. However, red dwarfs take trillions of years to consume their fuel, far longer than the 13.8-billion-year-old age of the universe, so no red dwarfs have yet become white dwarfs.

read more