Grenzfall für Schwarze Löcher

Seen nearly edgewise, the turbulent disk of gas churning around a black hole takes on a crazy double-humped appearance. The black hole’s extreme gravity alters the paths of light coming from different parts of the disk, producing the warped image. The black hole’s extreme gravitational field redirects and distorts light coming from different parts of the disk, but exactly what we see depends on our viewing angle. The greatest distortion occurs when viewing the system nearly edgewise. Credits: NASA’s Goddard Space Flight Center/Jeremy Schnittman

Einerseits sollten Schwarze Löcher immer etwas Masse verlieren, andererseits verhindert ihre Ladung irgendwann möglicherweise, dass sie weiter schrumpfen. Neue Versuche, den Konflikt zu lösen, offenbaren unerwartete Verbindungen zwischen fundamentalen physikalischen Größen.

Natalie Wolchover | Spektrum

This image highlights and explains various aspects of the black hole visualization.Credits: NASA’s Goddard Space Flight Center/Jeremy Schnittman

In den Gedankenexperimenten, mit denen Physiker die Extreme des Kosmos ausloten, spielen Schwarze Löcher seit Jahrzehnten eine Hauptrolle. Die dunklen Gebilde entstehen aus konzentrierter Materie, die durch ihre Schwerkraft bis zu einer bestimmten Entfernung alles gefangen hält, selbst Licht. Laut der Relativitätstheorie entspricht die Gravitation einer Krümmung im Gewebe aus Raum und Zeit; doch unmittelbar um das Zentrum eines Schwarzen Lochs ist die Struktur der Raumzeit enorm verzerrt, und Einsteins Gleichungen versagen. Generationen von Physikern haben in theoretischen Untersuchungen von Schwarzen Löchern nach Hinweisen auf eine mögliche Quantennatur der Schwerkraft gesucht, die sich hier offenbaren müsste.

Die Bestrebungen gehen auf Stephen Hawking zurück. Der britische Physiker berechnete 1974, dass Quanteneffekte am Rand Schwarzer Löcher diese langsam verdampfen lassen: Sie schrumpfen, während sie Wärmestrahlung abgeben. Das Phänomen prägt seither die Suche nach einer Quantengravitation.

In jüngerer Zeit sind Physiker auf neue theoretische Ansätze gestoßen, indem sie sich näher mit besonders grenzwertigen Vertretern der Schwarzen Löcher beschäftigt haben. Die Objekte erhalten nämlich elektrische Ladung, wenn geladenes Material in sie hineinfällt. Diese behalten sie, während sie auf die von Hawking beschriebene Weise schrumpfen und wieder an Masse verlieren. Das führt zu einer Grenze, bei der Schwarze Löcher eine Art Sättigungspunkt erreichen. Dort speichern sie so viel elektrische Ladung wie für ihre Größe möglich. Sie sind »extremal« und können nicht weiter verdampfen.

weiterlesen