Mathematik: Erdös-Vermutung geknackt


Nach 50 Jahren gelöst: Mathematiker haben eine der berühmten Erdös-Vermutungen bewiesen – die Existenz sogenannter Steiner-Tripelsysteme mit hoher Taillenweite. Sie besagt, dass beispielsweise sieben Personen sieben Trios bilden können, ohne dass sich dasselbe Paar in mehr als einem Tripel findet. Indem die Forscher Methoden aus der Wahrscheinlichkeitstheorie anwendeten, gelang es ihnen, diese Vermutung erstmals  zu beweisen.

scinexx

Ein Beispiel für ein Steiner-Tripelsystem: Jeder Punkt bildet drei Tripel, die durch Verbindungen derselben Farbe gekennzeichnet sind, während jedes Punktpaar nur zu exakt einem Tripel gehört. ©ISTA

Der ungarische Mathematiker Paul Erdös gilt als einer der bedeutendsten Mathematiker des 20. Jahrhunderts. Er stellte zahlreiche Sätze und Vermutungen in der Zahlentheorie und Kombinatorik auf, darunter einige, die sich mit der geometrischen Ordnung von Graphen beschäftigen. Einige dieser kombinatorischen Designs sind nicht nur für abstrakte Zusammenhänge relevant, sondern auch ganz praktisch für die Entwicklung von Experimenten und Computercodes.

weiterlesen